Spectral Element Method for Flow Simulation

Paul Fischer

University of lllinois

Departments of Computer Science and
Mechanical Science and Engineering

Mathematics and Computer Science Division
Argonne National Laboratory, U.S.A.

fischerp@illinois.edu

www.mcs.anl.gov/~fischer/sem

Introduction

B The spectral element method (SEM) is a high-order weighted residual
technique in which the computational domain is tessellated into

— curvilinear squares or triangles in 2D, or
— curvilinear bricks or tetrahedra in 3D.

B Within each of these elements (squares, bricks, etc.) the solution is
represented by Nth-order polynomials, where N=5-15 is most common but
N=1 to 100 or beyond is feasible.

N N
u(z, y)lge = > > ughi(r) hi(s)
i=0 j=0 — °
NERINRES)
\O! 02 ‘ T
hi(r) € Pn(r), hi(&5) = 0;j "“}!“‘g‘?'.‘.?“-i -

||
Y — _
E'E!.. E=3, N=4

SEM & Transport Phenomena

B The main advantage of the SEM is manifest in transport problems that are
characterized by first-order differential operators in space, e.g.

ou

Advection: e + c-Vu =0 (1)
: o ou 5
Advection-Diffusion: 5 + ¢ Vu = vV*u (2)
, ou 5
Navier-Stokes: e + u-Vu = —Vp + vV*u (3)
V-u=290

B In nondimensional form, we have |u| ~1, v = 1/Pe for (2) and v =1/Re for (3),

respective inverse Peclet and Reynolds numbers, which are small (e.g.,
10-4-10-%) for most engineering problems.

B Such problems are characterized by minimal dissipation -
The solution propagates for long times with minimal decay or energy loss.

SEM & Transport Phenomena

B These problems are particularly challenging because, unlike diffusion, where

0
2oV — Ug(t) ~ e~vk*t

ot

implies rapid decay of high wavenumber (k) components (and errors), the high-k
components and errors in advection-dominated problems persist.

B Turbulence provides a classic example of this phenomena:

& Turbulent pipe flow:
3 (a) Re_= 550

(b) Re_= 1000

2 by G.K. El Khoury, KTH

Turbulence in an IC Engine

Starting with an .stl file,
mesh is made with
CUBIT.

The lower panel shows
the mesh motion.

Lower-right shows a very
fine mesh used for the
intake port.

Vortex Breakdown at Rep = 15,000

B These are extremely well resolved calculations performed on Mira.

B Note the highly-resolved filamental horseshoe vortices around the base
of the valve stem that ultimately break down into a hairpin vortex chain.

Influence of Reynolds Number

E

20.0
-15.0

B The Reynolds number has a
significant impact on the scales
of motion.

" Rep=30,000

-‘-
=) —_
Q
(=}

B The Reynolds number in the
intake port of the TCC engine
peaks at around Re=45000,at ,
670 RPM.

c

B The Reynolds number in the

combustion chamber is about
Re=15000.

15.0

“ Rep=45,000

ImE u
i ~

Qo

o

Spectral Element Method: Exponential Convergence

Exact Navier-Stokes Solution (Kovazsnay ‘48)

J 4 orders-of-magnitude

error reduction when @t

doubling the resolution in

llv=v

N”l:!l ool

each direction [Vl

\\\W?// Y]

4
4 5 6 7 8 g o 11 12 13 14

d For a given error, i

2 Reduced number of gridpoints Vg 1 — e cos2my

ie)m:
2
2 Reduced data movement. Re \J Re?

A =
2 4

Q Reduced memory footprint. Uy sin 27y

+ 472

The SEM provides excellent transport properties,
even for non-smooth solutions

e
A
e s
LT
e "
(T

i e b N

Ar:--.‘.‘.'-v.‘
o A Y g
o
o e o e
e e - A e S A
D e e A e
e Y
T

Initial Condition K, =16, N=2

PR L7 o
iy ' | v Ly
ey t AN Y s
“.:?:‘:-.sl”;*q iy
et Ry s s =
e A e Y e s U e - g g Y
i o T s et e L e e S g s = 7 e

S A i L N S NP =
e e e L

Convection of non-smooth data on a 32x32
grid (K, x K, spectral elements of order N). (cf. Gottlieb & Orszag 77)

Relative Phase Error for h vs. p Refinement: u,+u_ =0

Phase Error for N=4, E=4,8,...,64 Phase Error for E=16, N=1,2,...,16

Relative Error in Spectrum
Relative Error in Spectrum

=)

e wa
< =]
[x]

=
T

-
<

=)
———

x
<

1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Fraction of Resolvable Modes

1 Il 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

k /k Fraction of Resolvable Modes k /k

max max

m k =n/2

B Fraction of accurately resolved modes is increased
only through increasing order (N orp)

Influence of Scaling on Discretization

Large problem sizes enabled by peta- and exascale computers allow propagation of
small features (size A) over distances L >>A. If speed ~ 1, then t; ,~ L/ A

— Dispersion errors accumulate linearly with time:

~|correct speed — numerical speed| * t (for each wavenumber)

2 error, ., ~ (L /A)* | numerical dispersion error |

— For fixed final error &, require: numerical dispersion error ~ (A /L)&;, << 1.

— We want methods with low dispersion error!

High-order methods can efficiently deliver small dispersion errors.
(Kreiss & Oliger 72, Gottlieb et al. 2007)

Linear Advection Example

Here, we consider linear advection with periodic BCs on [0,1]:

ou ou

5 T 63, =0 u0t) =ult) ul@0) = u.

With speed c = 1, the travelling wave

solution should return to the initial g =1
condition after each unit time. 08}
This result is not realized numerically, =

. . . . 02
especially for low-order discretizations.

Fal
0 "

02

Although the initial condition (black) is oul

well-resolved with n=200 points, the 2"9- 0 07 0z 03 01 05 06 07 08 09
. —_ g =

order solution exhibits trailing waves (red)

even after one revolution.

Numerical Dispersion, 2"9-order Spatial Discretization

B At later times, the dispersion just becomes worse...

Cumulative Dispersion at t=10 for Varying Order & Resolution

Finite Difference, n=200 SEM, n=90

1D Advection: 2nd-Order Finite Difference 1D SEM Convection: N=2, E=45, n=90.
1 &
*e
0.8
06
= 04f =
= =
= 5
02
0 Iy
02F
04F
1 1 1 1 1 1 1 1 1 -04r
0 01 02 03 04 05 06 07 08 09 1 L I I L I I I ! I
X 0 01 02 03 04 05 06 07 08 09 1
X-
1D Advection: 4th-Order Finite Difference, n=200 1D SEM Convection: N=9, E=10, n=90.
1+ E 1t
“r 4th-order ' N=9
06 4 06}
= 041 = L
% = 04
=]
0.2} b 02k
L 0
021] 0.2
04r 04}
1 1 1 1 1 1 1 1 1
0 01 02 03 04 05 06 07 08 09 1

1 1 1 1 1 1 1 1
Xe 0 01 02 03 04 05 06 07 08 09 1

Computational Savings

B We observe that with only 90 points the 9t"-order SEM is
able to outperform 4-order finite differences with 200
points.

B This translates into > 8x reduction in the number of points
for problems in 3D.

B We will see that the cost-per-gridpoint for the two
methods is essentially the same, meaning that the SEM
offers an order-of-magnitude reduction in computational
costs for this class of problems.

Matlab Demos

B demo fd2.m
B demo fd4.m

B demo_sem90.m

Cumulative Dispersion at t=10 for Varying Order: FD & SEM

Finite Difference, n=200 SEM, n=90

1D Advection: 4th-Order Finite Difference, n=200 1D SEM Convection: N=9, E=10, n=90.

.« 4th-order i . N=9 |

06 B 06}
g 04} 1 = 04l
= =1
0.2} h 02
L 0

02 B 02}

R] 04}

0 01 02 03 04 05 06 07 08 09 A 0 01 02 03 04 05 06 07 08 09 1
X X-

B The 90 point SEM with N=9 has much less dispersion
than 4%-order FD with n=200 points.

B This +2X savings in 1D translates into > 8X savings in 3D.
(To leading order, cost ~ n.)

M Note that one can also go to higher order FD (and there are
some advantages over SEM).

B However, there are also many advantages (BCs, geometric
flexibility) to the SEM.

SEM Derivation

B We turn now to the heart of the course.

B We will begin with development of the SEM in 1D for the
— Poisson equation
— steady convection-diffusion
— unsteady advection

These are constituent subproblems in the simulation of
incompressible flows.

B We then turn to higher space dimensions, with a primary focus on
2D, for conciseness.

Spectral Element Method: 1D

The SEM is based on the weighted residual technique, which is es-
sentially a method of undetermined coefficients.

Let’s consider the 1D Poisson equation

_d*a
dx?

= f(z), a@(0) = a(1) = 0.

We seek an approximate solution u from a finite-dimensional trial
space X(])V :

u € Xév = span{¢i(x), ¢1(x),..., dn(x)}, ¢;(0) = ¢;(1) = 0.

(We use the subscript on X§' to indicate that functions in this space
satisfy the homogeneous Dirichlet boundary conditions.)

Trial Solution and Residual

The trial solution has the form

u(x) = Zqﬁj(az)ﬂj.
j=1

The ¢;’s are the basis functions.

The 4;’s are the basis coefficients.

We define the residual, r(x;u) = r(x), as

r@) = flo) + 24

dx?’

It is clear that r is some measure of the error given that
r =0 iff u= u.

(In fact, it is the only measure of error available to us.)

Trial Solution and Residual

Another equivalent definition of the residual derives from the fact that

d*a
flz) = ——3
for the exact solution u(x). Substituting, we have,
d*u d> d%e
r(z) = f(z) + e —@(U—U) = T

where e(x) := u(z) — u(x) is the error.

The residual associated with u(x) is thus the differential operator applied
to the error function (with homogeneous boundary conditions).

This form will be of value later on.

WRT and Test Functions
In the WRT, we don’t require » = 0.

Rather, we insist that r be (£2-) orthogonal to a set of functions v
belonging to the the test space, YON :

1
/ vrdr = 0, VoeYy.
0

Convergence is attained as we complete the approximation space,
that is, as we let n — oo for a reasonable set of ¢;s.

It is most common to take the trial and test spaces to be the same,
Y{¥ = X}, which leads to the Galerkin formulation,

Find u € X' such that

L d%u 1 N
_/0 v@dx:/o v fdx Vove Xy .

Reducing Continuity to C9

It appears that « must be twice differentiable.

However, if we integrate by parts, we can reduce the continuity
requirements on u.

Let Z denote the l.h.s. of the preceding equation:

L d?u
A = —/0 ’U@dﬂ?

= 1d—vd—uda:—vdu
- o dx dx % o

L dv du
= — —dx
o dx dx
For a variety of technical reasons, it’s generally a good idea to balance

the continuity requirements of v and u, to the extent possible.

Weighted Residual / Variational Formulation

Using the integration-by-parts trick of the preceding slide (the
only bit of calculus we’ll require), we arrive at the weighted
residual statement for u.

Find u € X' such that

L dv du 1
— —dx = d Vove XY
o do x /0 v fdx v e X
Convergence is attained by taking the limit n — oo for an

appropriate set of basis functions in XJ'.

Important Properties of the Galerkin Formulation

B An essential property of the Galerkin formulation for the Poisson
equation is that the solution is the best fit in the approximation space,
with respect to the energy norm.

Specifically, we consider the bilinear form,

I dvdu
a(v,u) = ——dx
(v, w) /O dedr
and associated semi-norm,
2 .
|ullg == alu,u),

which 1s in fact a norm for all # satisfying the boundary conditions.

M [t is straightforward to show that our Galerkin solution, 2, is the closest

solution to the exact ¢ in the @-norm. That is,
Nu—dall, = [|w=dl|, foralw& XN

B In fact, u is closer to # than the interpolant of 1.

Best Fit Property, 1/4

Define:
L3 = {v:/v2da:<oo}
Q
HY = {U:UEE%,/(U/)2d$<OO}
Q
Hy = {’U:’UEHl, ’U|aQ:O}

Then, Yu,v € H,

a(u,v) = / u'v' dx (@ inner-product)
Q

|v]le v/ a(v,v) (a-norm)
|av]|q la| v/ a(v, v) a e R

|v|q 0iff v = 0.

Best Fit Property, 2/4

We now demonstrate that ||u — ||, < ||w — ||, Yw € X§.
Lete:=u—aand v:i=w—u€ X} .

For any w € X" we have

fw—allg = |lv+u—al
= |lv+ell

— /Ol(v—l—e)’(v—l—e)'da:

1
= / NVdx + 2/ edr + / (e)?dx
0

Best Fit Property, 3/4

The second term vanishes:

1 1
/ ' eldr + = / v (u—u)'dx
0 0
1 ;o 1 /o~ 0 because
= vu dr — v u dx of BCs
0 0
1 1)
= / v dx + / va" dr — vf&’|0
0 0

1 1
= / v de — / v fdx
0 0

= 0 Vo e Xy (by def’'n of u)

Best Fit Property 4/4

In summary, for any w € X(],V we have

fw—all; = [lvt+u-—dal

2
= [lvtellg

1 1 1
= VVde + 2 | e :1:+/) dx
| @) Mg+ @)
1

— /01 (v')Qdaz + /0 (e')2d33

Ju —all3

AV
VO\
—t
@
o
o)
&
1

Thus, of all functions in Xév , u is the closest to uw in the a-norm.

A deeper analysis establishes that, for u analytic, one has for the
spectral element method

o — u”?{}) < Ce N

Best Fit Viewed as a Projection

e Note that this result also demonstrates that a(v,e) = 0 for all v € X}".

e That is, the Galerkin statement is equivalent to having the error,
e=u—u 1, Xév :
e Thus, u is the projection of @ onto X' in the a inner-product.

e The procedure is often referred to as a Galerkin projection.

Formulation of the Discrete Problem

B Up to now, we have dealt with abstract issues and have established
the important best-fit property.

® From here on, we move to more practical issues.

Formulation of the Discrete Problem

We can now easily generate our discrete system that allows us to
compute the set of basis coefficients. Let

uw = (ujusg ... un)T,
v = (vivg ... vn)T.
Then
T = /Qv’u’ dr = (; o (x)) (Z)

[5
Ms

~.
I

—
Q.
I

—_

o (s ie) v
v; Aijjuj, = v

= _TAu

I
M-
M;

)
I
—_
S.
I
—_

with the (global) stiffness matriz, A, given by

| @) @) da

Formulation of the Discrete Problem

We proceed in a similar way with the right-hand side. Assuming
n
flx) =) ¢i(@)f
§=0

(which is way overly restrictive, since f € £3 suffices), then

1= /Qvfalflj = (Z@(x)%) <Z¢;‘(33)fj> dx

i=1 j=1

with the (global) mass matriz, B, given by

Bij = /Q ¢i(x)pj(z) dr.

Formulation of the Discrete Problem

Combining the results of the two previous slides, we have:
7 = QTAQZQTBi Vv € R",
which implies
Au= B /-

Since A is symmetric positive definite, this system is solvable.

Choice of Spaces & Bases

W At this point, it’s time to get specific and choose the space, X,
and associated basis, { ¢; }.

B The former influences convergence, i.e.,

— How large or small n must be for a given error.

W The latter influences implementation, i.e.,
— details and level of complexity, and
— performance (time to solution, for a given error).

B Keep in mind that our goal is to solve high Re / Pe flow problems,
So the convergence question is driven by considerations in the
convection-dominated limit.

B /nterestingly, for incompressible or low Mach-number flows, the
performance question is largely driven by the pressure-Poisson
equation, which governs the fastest time-scale in the problem.

Incompressible Navier-Stokes Equations

ou
Ot

u-\Vu
V- -u

—Vp %Vzu
O

Reynolds number Re > ~1000
— small amount of diffusion
— highly nonlinear (small scale structures result)

Must discretize in space and time...

Spaces and Bases for the SEM

B For the spectral element method in R, we choose XV to be the space
of piecewise polynomials of degree N on each element, ¢, e=1,.. ,E.
For example:

B Within each element, one has a choice between modal or nodal bases.

M The choice is largely immaterial because of the best-fit property.

M /t is easy to convert from modal to nodal and back, provided that both
representations are stable.

B So, within a given code, we might alternate between representations,
depending on the operation at hand.

Unstable and Stable Bases within the Elements

B Examples of unstable bases are:

— Monomials (modal): ¢, =

— High-order Lagrange mterpolants (nodal) on uniformly-spaced
points.

B Examples of stable bases are:
— Orthogonal polynomials (modal), e.g.,
 Legendre polynomials: L,(x), or

* bubble functions: ¢,(x) := L,.,(x) — L, 4(x).

— Lagrange (nodal) polynomials based on Gauss quadrature
points (e.g., Gauss-Legendre, Gauss-Chebyshev, Gauss-
Lobatto-Legendre, etc.)

B For the SEM, we typically use nodal bases on the Gauss-Lobatto-
Legendre (GLL) quadrature points. However, we often map back
and forth between GLL-based nodal values and Legendre or
bubble function modal bases, with minimal information loss.

Aside: GLL Points and Legendre Polynomials

The GLL points are the zeros of (1 — 22) L'y (z).

The Legendre polynomials are orthogonal with respect to the L? inner product,
1
/1 Lz(a:) Lj(l') dr = (5@']', L@(CB) e IP;.

They can be efficiently and stably computed using the 3-term recurrence,
Lo(z) =1, Li(x) ==,

Li(x) = % (2% — 1) 2 Ly 1(2) — (k— 1) Li_o(2)].

Even Legendre Polynomials, Lo—Lg Odd Legendre Polynomials, Li—Lg

1F B 1F B
08 E 0sl]
06 B 06} B
04+ b 041 B
02t /\ g 02} g

0 0
02 E 02+ 4
04 B 04F
06 R 06}

08} b 08
= | B 1F

-1 08 -06 04 02 0 02 04 06 08 1 -4 -o_'s -0_'6 —0j4 «012 6 0j2 0.I4 0:6 018 ‘II

Lagrange Polynomials: Good and Bad Point Distributions

Uniform Gauss-Lobatto-Legendre

Piecewise Polynomial Bases: Linear and Quadratic

/ \

: O

G—E——6—5 o—o—o0
4 > To Ty Iy re Tn g

=

or a9 0 ot o5 8 r o8

Figure 2: Examples of one-dimensional piecewise linear (left) and piecewise quadratic (right) La-
grangian basis functions, ¢o(x) and @3(2), with associated element support, ¢, e =1.... E.

M Linear case results in A being tridiagonal (b.w. = 1)

B Q: What is matrix bandwidth for piecewise quadratic case?

Basis functions for N=1, E=5 on element 3.

& basis functions for N=2, E=5

& basis functions for N=3, E=5

& basis functions for N=3, E=5

® Notice that ¢,and ¢, are also nonzero in the neighboring elements,
because of the requirement XN ¢ H'-

& basis functions for N=4, E=5

& basis functions for N=5, E=5

& basis functions for N=6, E=5

S/ S S

& basis functions for N=10, E=5

Local Modal Bases, N=8

For Kk =0 or N, boundary modes.
Fork=1,...,N —1,

$r(§) = Lp41(€) — Li_1(&)

*Modal bases are particularly useful for filtering (higher k - higher frequency).

*It is easy to convert between stable nodal and modal bases.

Working with 1D Nodal Bases on GLL Points

Trapezoidal Rule for f(x)=sin(©.x) on [0,1]

Quadrature: Trapezoidal Rule

Let 7

|
S
P
=
=8
8
{
il\g
E
=
B
I
O
2

For trapezoidal rule (with uniform spacing, say),

r, = a + j-Az, Az := (b—a)/N,

w;, = Az, 7 =12 ...,n—1
1
wy = wnzaAa:.

e Convergence is O(N %)

|Z -~ Qx| ~ CN*

trap_v _gll.m, trap txt.m

Integration Error

0 0.2 0.4
*

0.6 0.8 1

Trapezoidal Rule Convergence: Jsin(x)

Working with 1D Nodal Bases on GLL Points

Gauss-Lobatto-Legendre Quadrature

GLL Rule for f{x)=sin(%) on [0,1]

f
1 n-1

0 0.2 04 0.6 0.8 1
X

GLL and Trapezoidal Rule Convergence: Jsin(x)

b N
Let 7 := /a f(z)dx =~ _Zowjf(xj) =: Qn. o
iz
b
o= a4+ (G +) "
¢; = GLL quadrature points = zeros of (1 — &%) Ly (€)
b—a [
wj = —5— [W)
b—a

= —5—pi pj = GLL quadrature weight on [—1,1]

Integration Error

e For smooth functions, convergence is O(e "):

|1Z — Qn| ~ Ce ™, o>0.

trap_v_gll.m, gll_txt.m

Working with 1D Nodal Bases on GLL Points

GLL Rule for f{x)=sin(%) on [0,1]

Gauss-Lobatto-Legendre Quadrature I
06t fy
b N
Let 7 := /a f(z)dr = wajf(xj) =: Qn. s}
J:
é "l f1 fn-1
b —a T "
zjp = a+ ——(&+ 1 ’ N
¢; = GLL quadrature points = zeros of (1 — &%) Ly (€) L
b . o GLL and Trapezoidal Rule Convergence: Jsin(x)
JR— a . T T T T T T T T
w = g Ly e e
b_ 107
= Tapj, p; = GLL quadrature weight on [—1,1] 5w
f I Spectral]
¢. 4= convergence |

e For smooth functions, convergence is O(e 7%):

|1Z — Qn| ~ Ce ™, o>0.

I L L L L
0 10 20 30 40 50 60 70 80 90 100

Working with 1D Nodal Bases

B What is the convergence behavior for highly oscillatory functions?

T T T T T T T T T T T
1+ .
0.8 —
0.6 -
04 -
0.2 —
0~ -
0.2 - -
04 .
0.6 - —
0.8 - -
-1 —

| | | | | | | | | | |

0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1

trap_v_gll_ k.m

Working with SEM Bases — 1D

B Keys to high-performance in 3D:

1.
2.
3.

N o Ok

Low numerical dispersion (2x savings in each direction, 8x overall)
Element-by-element assembly of solution and data

Use of GLL-based Lagrangian interpolants and quadrature

e diagonal mass matrix, fast operator evaluation

Global (and local!) matrix-free operator evaluation

Fast tensor-product based local operator evaluation

Fast tensor-product based local inverses

Matrix-matrix product based kernels

B Only 1—3 are applicable in 1D.
B We'll start with 2 and 3, and come back to 4-7 shortly.

Working with SEM Bases — 1D

Recall our global system to be solved:
Au=Bf

For most discretizations (finite difference, finite volume, finite element,
spectral element, etc.) iterative solvers are the fastest possible in 3D.

These solvers require only the action of a matrix times a vector (usually
implemented via a subroutine) and do not require explicit formation of
the matrix or its LU factorization.

Thus, we consider matrix-free operator evaluation in which we never
form the global nor (ultimately in 2D or 3D) the local stiffness matrix.

It is nonetheless useful to understand the matrix assembly process, as
notation and analysis in linear algebra is quite helpful.

— Also, for matlab, it generally pays to assemble the 1D matrices.

Spectral Element Bases, 1D

e We transform coordinates from) to Q¢ via affine mappings, z€(r).

ho(r) — ha(r) — x(r)

& & & &, & Q!

|lfe——rcQ:=[- 11]—>|

N
e On)° we have, wu(x)|ge = Zuj hj(r) re Q= [-1,1]
=0
~e ~e—1
z(r) = x|ge = gt 4 u ; (r+1)
hi(r) € Pn(r)
h](gz) = 57;j, i,j c [O,...,N]2

¢ = GLL quadrature points € [—1,1]

Spectral Element Bases, 1D

- - -
S0%1 %2 %3 S S5 %6 v oN

Return to the WRT and consider v, u € X* (but not X{" for now).

Let
——dx = ——d A
/d:z:alaz:aj Z/edajdmx ez ’
With L€ := 7¢ — ¢! we have,

dv du dv du
¢ = ——dx = / ——d
Qe dx dx o Le "

Spectral Element Bases, 1D

Using
N N

ulge = wf(r) = Y ufhi(r), vlge = 0°(r) = Y of hi(r),
4=0 1=0

we can readily compute the derivatives,

du <~ dh; dv® .
DD e P DL s

Local 1D Stiffness Matrix

Inserting the local basis into the local integral yields

dv d 2 (K dh 2. dh;
7€ . o éﬁ dr = §/—1 <i_0 - vf) (;} d—;uj) dr
- Bl g%
= qu Afusg,
where
AS. = 2 flw, and flw = b dh dhj dr.

i T e T) dr dr

Assembly of 1D Stiffness Matrix

If we define u® := (u§ u ... u)! and similarly for v¢, we have
N N
¢ = Z Z vi Ajus = (v A%u®.
i=0 j=0
Let
ut Al
(52 \ (A2 \
ur = ﬂ.e 9 AL ‘= ' A€

\uE/ \ AF)

Define v; similarly using v°.

Assembly of 1D Stiffness Matrix

The left-hand side of our WR statement reads

E

E
7 = ZI‘?:Z
e=1

e=1

(Qe)T Aeﬂe

4)

A2

—
N SO S
Y
_
—
N SIS
N
—

(& Y

|
IS
®
I
®
IS

e)\ YA

= ol A u;.

e This is an important picture, so let’s look at it a bit more deeply.

Working with the unassembled matrix, A,

TR V[
1 = y:e A e Qe = v AL up.
A RS

v

;

A
e A; has precisely the same structure in higher space dimensions.
e In 2D and 3D problems, we work exclusively with A¢ and u®, e=1,..., FE.
e In fact, we never even form A€, but just compute the action of A® on u°.
e The physics of the operator is embedded in the A°®s.
e It is clear that A°u®, e =1,..., F can be computed independently, in parallel!

e Keep in mind that u€ is simply the set of local basis coefficients on €2€.

What about Continuity ?

u(l)” 1

u
'b___]\‘;}

e

Because XV C H!, we must have u (and v) be continuous.
Thus, we can’t allow functions like the one above.

If w € X~ then we must have uk = 2 or. in general. u&, = &t
N 0) g y YN 0

In higher space dimensions, a similar rule applies.
For example, in 2D, we have for any v € X%

us: = uss iff Xi;

>y

X

A~

)

Continuity is reflected by global numbering:

For a continuous u(x) (i.e., u € XV), we have:

ut
Local (elemental) numbering: ’
1 ul
(2) G/\
: h K ujVJ ug un
ur, = ge ’ QL
\ u®
Global numbering: i

[
(G uo
. U N
4 | wj\f

\ Un‘+1

I
I

Recall, for u € X}V we reqiure u(0) = u(1) = 0, which implies vy = 4,1 = 0 in the
global notation, so we will have only v = (uq us ... u,)’ as degrees-of-freedom.

Continuity is reflected by global numbering:

For any u € X, there is a Boolean (1s and 0s) matrix Q such that u; = Qu,
where u; is the local nodal representation and w is the global representation,
including boundary values.

For example, in the preceding case, we have:

(ub) (1 \ [o)
u% ui
u% u2
u:l,) us
u}L Uy
u(Q) Uus
u% ue
u% u7
u% us

ug

J

us, = @ u

Note that uj = u are copies of us by virtue of the pair of 1s in column 5.

Continuity is reflected by global numbering:

One the left, we have the distribution of the local basis coefficients given in

u; = (ﬂl QQ)T:

ut |

/:

~~

\

U

Note that uj = u

[o

(5}
U2
us
Uy
us
Ue
uy

usg

\ o
u

are copies of uy by virtue of the pair of 1s in column 5.

Continuity is reflected by global numbering:

Note that uj = u are copies of uy by virtue of the pair of 1s in column 5.

(w1 \ ()

ul 1 uq
ud 1 U2
’ L e
wy 1 Uy
u3 a 1 Uus
u? 1 U
u3 1 Uy
u3 1 usg
\ui /) \ 1)\ u /

<

=
|

O

u

Q: What is the result if we compute some vector @ = Q7 w;?

Continuity is reflected by global numbering:

For a continuous u(x) (i.e., u € XV), we have:

ue
Local (elemental) numbering: ’
ul 5
/ ; \ Tg/@\\(
Uy = ue
\ u?)
Global numbering: e

[
U1 uo
. U N
4 | wj\f

\ Un‘+1

I
I

Recall, for u € X}V we reqiure u(0) = u(1) = 0, which implies vy = 4,1 = 0 in the
global notation, so we will have only v = (uq us ... u,)’ as degrees-of-freedom.

Continuity is reflected by global numbering:

So, for any u € XV C H!, there exists a global vector & = (uguq us ... Uny1)’
and Boolean matrix () such that the local basis coefficients are given by

u;, = Qu,
where
ur _ gl _2 ge o QE)T
w = (ufuf ouf)’
and

= (’LLO up ... Uj... un+1)T.

I

These components allow us to cast the global (solvable) system in terms of
local (computable) quantities.

e u; is the only vector we work with in the SEM for 2D and 3D problems.

Stiffness Matrix Assembly

Returning to our WR statement and using u; = Qu, we have

T = Q}jAL ur,
= (Qv)"AL Qu
= 7' Q"AL Qu
T A

3

= v

Here, A is the assembled Neumann operator:

A = QTALQ.

It has a non-trivial null space of dimension 1 because we have yet to
apply the boundary conditions. (A times the constant vector is zero.)

At this point we need to restrict v and @ to apply the boundary con-
tions, i.e., to ensure u,v € X C Hj.

Application of Homogeneous Dirichlet Conditions

o If u € X, the global (and local) basis coefficients on the boundary are zero:
ug = uy = 0, and Unp1 = ub = 0.

e In our original definition of A, we had Z = v’ Au, where the index ranged from
1 to n on the global vectors v and wu.

e Therefore we construct a restriction matrix R and prolongation matrix R’ that
“cuts oft” ug and up1.

e If n :=n+ 2 (or, in general, accounts for all points, inc. boundary), then R is
essentially the n X n identity matrix with rows corresponding to boundary points
deleted.

Application of Homogeneous Dirichlet Conditions

e Here is an example of the restriction matrix applied to yield u = Ru:

()
() (o V|
U9 1 Uz
us3 1 us3
Uy 1 Uy
us - 1 us
Ug 1 Ug
Uy 1 Uy
\u8) \ 1 0 / ug

Sy

u = R U

Application of Homogeneous Dirichlet Conditions

e The real strength of R, however, comes in the application of its transpose,
which allows us to generate a u and, ultimately, u; such that u € X(])V :

e Below, we see that ug and u,; will be zero, which is what we want.

(o) (o \
z 1 ()
U 1 w2
us 1 us
w4 1 U4
us - 1 us
ug 1 ug
w7 1 w7
usg 1 \ us /

\ uo / \ 0)

N

|
Ay
N

IS

Application of Homogeneous Dirichlet Conditions

e Note that we can also generate a mask, M := RT R that will map a function

from X% into X}.

e This is the approach used in Nek5000, where functions are always represented

by local coeflicients.

(w0)
Ul
u
us3
(%}
us
Ue
w7

us

\ uo /

u <~

(w0)

u
us3
U4
us
Uue
wr

usg

\ uo)

N

Application of Homogeneous Dirichlet Conditions

e Returning to our WR statement and using @ = R’ wu, we can now explicitly
identify the global stiffness matrix A.

T = v'Au = v'RARYu = o' Au

e Recalling our earlier definitions, it’s clear that we have

A = RAR" = RQTA.QRT

e Note that, for all u € X}’ C H{, we have

u;, = QR'u

o () ensures that u,v € H'.
o Rl ensures that u,v € H.

Summary: SEM Stiffness Matrix

Summarizing our matrix-vector product, we have:

Au = RQTA,QR™u

(A \
A2
= RQ' . QR u

\ Ly

= RQ'

\ A%)\ u®)
The local matrix-vector products (Which determine the physics) are,

Acy|, = ZA,U us = (/ ni 1, dr)

SEM Mass Matrix

Assuming (for now) that f € XJ', construction of the r.h.s. follows
in the same way. We have:

Bf = RQ"BLQR'f
Bl
32
= RQT) QR'f
. o
o :
= RQT b f
BE fE

Now the local matrix-vector products are

N N e
;T 2B = > 5 (fmmar) 57
]=

7=0

Beie

Correcting the RHS

Note: Our assumption of f € X{¥ C H} is way too restrictive.

e In fact, it suffices to have f € £?, which allows jump discontinuites.

e Thus, we can lift the boundary condition (R) and continuity (@) restric-
tions on f and simply write the r.h.s. as

[B \ (L)
f

g = RQ"Brf, = RQ"

Ay

e Notice that f is now happily in £2? as there is no @ nor R to apply.
e On the left, however, we still have @ and R because v € H}.

e These terms are an important part of the projection process.

Final System of Equations

e So, we (finally!) arrive at our system of equations, where we now
understand every detail:

e Notice how, equipped with the right tools, the derivation of the
r.h.s. was much (much) faster?!

Final System of Equations

e In all its detail, our solution (in local form) reads

up, = QR (RQ"ALQR") " RQ"B.f

e As we move to new physics, and to higher space dimensions, the
final form will look much the same.

e The essential tools,
— local physics (A€, B€),
— appropriate continuity (Q), and
— boundary conditions (R),

and their interactions have been carefully established.

BREAK

SEM, Next Steps

B Lecture 2: 1D
— GLL quadrature
— Other BCs: Neumann
— Advection
— Nonlinear example

B |ecture 3: 2D and 3D
— Matrix formulation
— Curvilinear / mesh transformations

— Preconditioned iterative solvers

Quadrature Rules for the SEM

B One of the primary reasons for choosing Gauss-Lobatto-Legendre
points as nodal points is that they yield well-conditioned systems.
(More on this point shortly.)

M |t also allows us to significantly simplify operator evaluation,
especially in 3D, which is where cost counts the most!

B Let s begin with the stability (i.e., conditioning) issue.

Conditioning of the SEM Operators

The condition number, K, of a linear system governs the round-off error and,
ultimately, the number of correct digits retained when multiplying a vector by
a matrix or its inverse.

For a symmetric positive definite (SPD) matrix 4 (as in our case), kK is the
ratio of max to min eigenvalues:

K~N. /N

max min

If Kk ~ 10%, you can expect to lose ~ k digits when solving Au =g, soa
smaller condition number is better.

As indicated earlier, the condition number of A4 is governed by the choice of
basis functions.

In infinite-precision arithmetic, however, the choice is immaterial since the
Galerkin scheme ensures that we would get the same best-fit solution.

Condition Number of A vs. Polynomial Order

1015 Condition of 1D Laplacian, u{-1=u'{1 =0
$Monomials: }’}f
P !
0L fffjniformly spaced nodes
5
2 2
=
5 /
=
i
% L)
=
S 7
5
10 GLL Points ~N3 .3
0
10 L

0 S 10 15 20 25 30 35 40 45 50
Polynomial Order N

B Monomials and Lagrange interpolants on uniform points
exhibit exponentional growth in condition number.

B With just a 7x7 system the monomials would lose 10
significant digits (of 15, in 64-bit arithmetic).

Quadrature for the SEM

e In addition to good conditioning, use of nodal bases on the GLL points
also results in reduced operator evaluation costs.

e Our local 1D stiffness and mass matrices on €2 have the form
L dh, dh;

A —
W _1 dr dr

R 1
d?“, Bij = / hz (7“) hj (T) dr.
—1

e A key idea is to use Gauss quadrature to evaluate these integrals,
either exactly or approximately.

e The Gauss-Legendre quadrature problem is stated as follows:

Consider ¢(z) € Py. Find points & € Q and weights pg,
k=0,...,N, such that

1
/ q(x)dr Vg € Py,
—1

N
> prealé)
k=0

with M as large as possible.

What is the highest possible polynomial order, M?

e Let’s look at the cardinality, | .|, of the sets.

|]PM| = M + 1
lpe| + [k] = 2N + 2
M+1 = 2N +2 <— M = 2N +1

e Indeed, it is possible to find & and pg such that all polynomials of
degree < M = 2N + 1 are integrated exactly.

e The &’s are the zeros of the Legendre polynomial, Ln.q(7).

e The p;.’s are the integrals of the cardinal Lagrange polynomials pass-
ing through these points:.

r - -
oo = [he(ydr, hiePy, helg) = 0y k=0, N

Gauss-Lobatto-Legendre Quadrature for the SEM

e This is the same idea as Gauss-Legendre (GL) quadrature, save that with
GLL quadrature we prescribe two of the points: & := —1 and &y = 1.

e Now, we have only 2N +2 — 2 = 2N degrees of freedom.

e So, we expect |Py| = M+1=2N—-1— M = 2N —1.

e In this case, the &’s are the zeros of (1 — r%)L\(r).

e As before, the p;’s are the integrals of the cardinal Lagrange poly-
nomials passing through these points:.

1
Pr = /1 hk(T) dr, hi, € Py, hk(fj) = 5@'.

e Let’s return to the local integrals in our WRT!

Quadrature for the SEM

e We now replace the integrals with quadrature.

e For the mass matrix, we have

A 1 N
Bi; = / hi(r) hj(r)dr =~ Zpk hi(€k) hj(Ek) = pidij
—1 k=0

The last equivalence establishes the important result that B is diagonal.

Quadrature for the SEM

e In fact, it is always possible to construct such a diagonal mass matrix.

— Simply start with a standard mass matrix and replace it by a
diagonal matrix having the same row sum as the original.

— This is often called mass lumping.

— The rule of thumb with quadrature is to ensure that the error is
small and that the resultant discrete operator has the correct spectral
properties (e.g., care is required for convection operators).

e What is key for the SEM is that it is a very good diagonal mass matrix
because of the high order, N.

— The quadrature errors decay exponentially for smooth integrands.

Quadrature for the SEM

e For the stiffness matrix, we have

. L dh; dh: N dh;| dh; L

- i A e = —| =\ = DTBD

" 1 dr dr " I;)Pk: dr |¢, dr g, ’
where D is the derivative matriz with entries
dh;

Dij =

dr

%

e This result is eract because the integrand is a polynomial of degree 2N — 2.

e As we’ll see shortly, quadrature is very convenient (but not exact) for
variable coefficient problems.

Quadrature for the SEM

If we have a variable coefficient problem, e.g.,

~Lp@) S = f@), ul0) = u(1) =0,

then, after integration by parts, the local stiffness matrix is

2 1 dh; dh; al dh;| dh;
A, = = / e(ry — L dr =~ e v J
1] Le 1 p (’r) d?“ d?“ r k:z::opk pk‘ d’r ék d’r
where p} := p(z7).
. 2 4 A A
o Let P°:= diag(py) - Then A° = e DTP¢BD.
D A oA A
e Compare this with the standard case: A° = e DU'BD

e Recall, B is diagonal.

e The approach outlined here is similar to collocation.

fk.

Let’s Look at Some Examples

Let’s take the variable coefficient problem

d du

—p() = f@), w(0) = u(r) =0,

with p(z) = €% and exact solution @(x) = sin(z) € H}.
e The rhs in this case is f(x) = e*(sin(x) — cos(x)).

e For this 1D example, we will form A; := block-diag(A®) on an
element-by-element basis.

e We will then assemble it and restrict it to yield A = RQTALQR”.

e We then set up the rhs, g = RQ"' By, f1, and solve u = A\g (matlab
notation).

e We plot (27,ur) and (xr,4y) using local coordinates.

e Finally, we check the pointwise error.

var_1d_poission.m

Convection-Diffusion Example

Consider the steady-state convection-diffusion equation,

82’“ ot

e The WR formulation reads: Find @ € H{ such that

dv du du
d_QZV%dCE—'_/UCd_Cde = /Qvfda: Vv € H.

e Discretization proceeds by seeking u € XV C H{ such that

d
—vv—dx—l—/vc—da: :/'dea: vo € X{V.
dr dx 0

Convection-Diffusion Example

There is only one new component:

c(v,u) = / ch—Zdaz

e This leads to the local convection matriz,

. d
C = [elw)bile) T
e Switching to the reference element,) := [—1, 1],
e e dh (& e
c5 = | Emn d; ar,) = @ ()
N
dh;
~ Zpkc (€k) i (Ek) — =

o [f °

k

= C¢ pi Dij.

1

= diag(c;) is the diagonal matrix of local velocity values, then

A A

C°=c"BD,

Convection-Diffusion System of Equations

e The full system for the convection-diffusion equation reads

(A+ C)u = RQ'Brf, |with
A = RQTALQRTa
C = RQ'CLQR'.

Here, Ap:=block-diag(A®) and Cp:=block-diag(C*®).
e If v is constant, then A® = %A For variable v, we have

2 A A A
A° = EDT v¢ BD, Ve = diag(vy) .

e QQ: Why is it that A® depends on L€, but C'¢ does not?

CD: Solution and Error, v = 1072, E=3, N=21

1.2

08

Exact solution:

1

C

e—c/v—1

(- -

e—C/I/ _ 6c(:zc—l)/l/)

.01

0.6 i
Q

04 4
0.2 | #

b .

. I - | ,'l ,l III.II |"I |] |X|I .F{ .I' |.] l()
~~~~~~~~~~~~~~~ SR I B AR B AR R P AT ALEN

1 oy s KRR 1K L . ' | y

; |, I || '[ |‘ II | || 'xl le . r 1l II I
o - K N !
02 ] ] ] ] |- 1 11 ] ]

0 o1 02 03 04 05 06 07 08 09 1

B Here, in order to resolve the boundary layer, the last element

is 1/3 the size of the others. The erroris 2.e-12.
steady 1d _cd.m



Matlab Code for Steady State Convection-Diffusion

Enter: N - polynomial order
E - Number of Elements
F

- fractional size of last (boundary-layer) element
Example: N=21; E=3; F=3; steady_cd;

will run this code with last element being
1/3 the size of the first two. .

00 0P O° OP O° dP I oP o

Lx = 1; bc = 0;

nu = .01; c=1; % ¢ = Speed
nb= E*N+1;

[Ah,Bh,Ch,Dh,z,w]=semhat(N);
R speye(nb); R=R(2:nb-1,:);
Q semq(E,N,bc);

Le = Lx/E; LE = ones(E,l); LE(E)=LE(E)/F;
XE=cumsum(LE); XE=Lx*[0; XE]/XE(E); LE=diff(XE);

XL = zeros(N+1,E);
for e=1:E; XL(:,e)=XE(e)+.5*(XE(et+tl)-XE(e))*(z+1l); end;
xL=reshape(XL,E*(N+1),1);

LI = diag(2./LE); LI=sparse(LI);

AL = kron(LI,Ah); % Standard A_L
CL = kron(speye(E),Ch); % Standard C_L, uniform speed
BL = kron(diag(LE./2),Bh); % Standard B_L

A = R*Q'*AL*Q*R';
C = R*Q'*CL*Q*R';
G = nu*A + c*C;

fL = 0*xL + 1; g f=1

g = R*Q'*BL*fL;

u = G\g; uL=Q*R'*u;

ec=exp(-c/nu); ut=( xL - ( ec-exp(c*(xL-1)/nu) ) / (ec-1) )/c;
err=max(abs(uL-ut)), scale = 0.2/err;

Ilot(xL,uL,’ro—‘,xL,ut,’bo—',xL,scale*(uL—ut),’g—.‘)



Matlab Demo: steady 1d cd.m

® What happens when we vary v ?
B Try small v for n even and n odd. Is there any significant difference?

® For small v, can you refine your mesh (h, p, or r refinement) to
recover a good solution?

B Exercise for later:

— Examine the behavior when you time-march the solution to a
steady state, both with and without a stabilizing filter.

— What is the impact of the filter in the well-resolved case?



Inhomogeneous Neumann Condition (1/4)

24 u(—1)
Ex le: R —
ample — f(x) {ﬂ’(l) .,

Standard Derivation: Find u € X}' such that

1 d?u 1 N
—/_1v@d$ = /_1vf(:c)dx Vv € X

Integrate by parts and use inhomogeneous Neumann condition:

= /11 v f(x)dz

—1 —

1
_1] = /_1’Uf(x)da:

L dv du 1
/1%%0&9 = /1vf(a:)d:c+v(1)g.




Inhomogeneous Neumann Condition (2/4)

This equation is standard, save for the addition of the extra term at x=1:

1 1
/ @d_udaj = / v f(z)dr + v(l)g Yo € X{.
-1 dr dx —1

Consider now N equations, generated by taking for ¢ =1,..., N,

v(z) = ¢i(z) = hi(x),

where we are taking the basis functions to be the cardinal

A

Lagrange polynomials, h;(z) for z € [—1,1] = Q.

Note that all basis functions vanish at x = 1 except for hy(z),
so only the last equation is modified.



Inhomogeneous Neumann Condition (3/4)

e Only the last equation is modified.

1 du d 1
/ P4 = / v f(z)dr + v(l)g Yo € X¥.
1

-1 diL’ dl‘ _
e Accounting for the homogeneous Dirichlet condition at x = —1,
- ann a2 0 Q1N | ( Uy \ ( p1f1 \
21 Q22 -+ G2N U2 p2f2
| GN1 GN2 " ANN | \’MN/ \prNJrg/

e Though not immediately evident, we this system implies:

lim d_u
N—soo dx

r=1

e To see this, we start with the top equation and integrate back.



Inhomogeneous Neumann Condition (4/4)

e Integrating the LHS of

L dv du 1
[1%%d$ = /_1Uf(33)d513—|—’0(1)g VUEX(J)V.

by parts and rearranging, we obtain

/1 [dzu ] du
V| — dv + v —

— (1 XN,
) dx2 dx v(l)g v € X

rx=1

e Because our quadrature rule is exact for the 2nd-order term,
the last equation of the preceding slide reads

d*u du
- — = 1)g.
PN[ o3 f] UL v(1)g
) du
e Since py ~ 2N 2 we have: Nh_fﬁloo Iz = g
z=1




Modify Steady State Convection-Diffusion

Enter: N - polynomial order
E - Number of Elements
F - fractional size of last (boundary-layer) element

Example: N=21; E=3; F=3; steady_cd;

will run this code with last element being
1/3 the size of the first two.

00 0P O° OP O° dP I oP o

Lx = 1; bc = 0;

nu = .01; c=1; % ¢ = Speed

Ab= E+N+1; Q: How should we modify the
(Ah,Bh,Ch,Dh, 2, ] =semhat (X) steady state convection-diffusion

R = speye(nb); R=R(2:nb-1,:);
Q

semq(E, N, be) ; solver for a Neumann condition at

Le = Lx/E; LE = ones(E,l); LE(E)=LE(E)/F; — 1,
XE=cumsum(LE); XE=Lx*[0; XE]/XE(E); LE=diff(XE); X—1 H

XL = zeros(N+1,E);
for e=1:E; XL(:,e)=XE(e)+.5*(XE(e+1)-XE(e))*(z+1); end;
xL=reshape(XL,E*(N+1),1);

LI = diag(2./LE); LI=sparse(LI); 1 m 2
AL = kron(LI,Ah); % Standard A_L Steady— d—Cd' -
CL = kron(speye(E),Ch); % Standard C_L, uniform speed

BL = kron(diag(LE./2),Bh); % Standard B_L

A = R*Q'*AL*Q*R';

C = R*Q'*CL*Q*R';

G = nu*A + c*C;

fL = 0*xL + 1; g f=1

g = R*Q'*BL*fL;

u = G\g; uL=Q*R'*u;

ec=exp(-c/nu); ut=( xL - ( ec-exp(c*(xL-1)/nu) ) / (ec-1) )/c;

err=max(abs(uL-ut)), scale = 0.2/err;

Ilot(xL,uL,’ro—‘,xL,ut,’bo—',xL,scale*(uL—ut),’g—.‘)



Unsteady Convection-Diffusion Example



Unsteady Convection-Diffusion Example

We now have the time-dependent problem,

@4_ @— @_l_f
ot “or = Vo2 ’

u(0,t) = u(l,t) =0, u(x,0) = ug(x).

e Rearrange and evaluate each term at time t" = mAt,

(),
¢m ax tm

e The first term we evaluate using kth-order backward difference formulae (BDFE),

ot
[ V —
m Ox?

o
ot

m __ um—l

ou U
el _ A
Ot |, A T ol
3u™ — 4™ 4 32
— At?
SA7 + O(At?)

11u™ — 18 m—1_|_9 m—2_2 m—3
_ u U 6Atu U + O(AP)




BDFk Formulas: GTE = O(AtX)

u” — un—l

BDFL: G| o 0
3un . 4un—1 e un—2
. Oul 2
BDF2: %y N + O(AP?)
11u™ — 18u™ 1 + 9y=2 — 2973
° —au p—
BDF3: ¢ o~

M k-th order accurate

® [mplicit

B Unconditionally stable only for k < 2

B Multi-step: require data from previous timesteps

+ O(AP).



Unsteady Convection-Diffusion Example

e The viscous term is treated implicitly,

d2gm
",
dx?

R
’/_
Ox?

tm

e Convection and the forcing are treated explicitly via extrapolation,

(1-<5).

I
N
s

3
L
o
QU
g
;
~
_|_
S
>




Spatial — Temporal Discretization

For simplicity, we consider BDF2/EXT2 and discretize in space with the WRT.
To begin, we arrange terms.

Wi ou 3u™ — 4oL 4 Zgm—2
€ use —_ ~
’ Ot |ym 2At
8 k
g" o~ 2gMt - g = (f — 68—u> :
€T

e When rearranged, we have our O(At?) timestepping scheme:

3 d>u™ 4 1
§um — UA¢t d::Q — §um—1 . 5um—Q 1 29m—1 _gm—2 = qm

e Proceding as before with the WRT, the fully-discretized problem reads,
Find u™ € X}V such that

g(v,um)N + vAtay(v,u™) = (v,q")n,

where we have used subscript N to denote the use of discrete GLL quadrature.



Spatial — Temporal Discretization

e Inserting our basis functions and coefficient vectors as before we have,

3
§QTBQm +vAty' Au™ = o'Q'Brg}’, Vv eR"

Or simply,
Hﬂm — QTBLQ?7

where the discrete Helmholtz operator is defined as
H = B+ vAt A.

e Recall that B is diagonal for the SEM and that, typically, vAt < 1, so
that H is strongly diagonally dominant, which tends to make H (or, more
properly, B~'H) well-conditioned.

e This property is very helpful when solving time-dependent problems using
iterative solvers in higher-space dimensions.



Additional Timestepping Considerations

e We typically use the 3rd-order schemes as their stability diagram en-
compasses part of the imaginary axis, which is where the eigenvalues of
convection-dominated systems are found.

e The BDF3 and EXT3 formulae require prior values of v and the data,
so we typically start with BDF1, 2, ..., 3, which means we are at best

O(At?) accurate. (Why?)

e For turbulence, this generally doesn’t matter because the initial con-
ditions are contrived. For restarted solutions it’s a bit annoying — one
can always save multiple solutions for restart, which is our approach, or
switch to an RK scheme for start-up.



Additional Timestepping Considerations

e A very important question for explicit or semi-implicit timesteppers is,
How large a timestep At can one take and still be stable?

e This question depends jointly on the temporal and spatial discretiza-
tions.

e Specifically, the temporal discretization determines the region of stabil-
ity for the explicit (or implicit) timestepper.

e The spatial discretizaton determines the eigenvalues for which AA¢ must
fit inside the stability region.

e Starting with the stability region, we show how to rapidly estimate
these quantities to ensure a stable timestepper.



Stability of Various Timesteppers

® Derived from model problem du _
dt
W Stability regions shown in the AAt plane (stable inside the curves)

AU

-oa} \ Re >\ -0z} -12

-caf & —~— 1 -25f -3

L - L L - I 1
-2s 2 os -15 -1 05 0 cs =15 -1 -0s 0 oS

Figure 1: Stability regions for (left) AB2 and BDF2/EXT2, (center) AB3 and BDF3/EXTS3,
and (right) AB3 and BDF2/EXT2a.

B To make effective use of this plot, we need to know something about
the eigenvalues A of the discrete convection operator.

MW But first, How are these plots generated?



Determining the Neutral-Stability Curve

d
Consider BDF2/EXT2, and apply it to d—i‘ — Au:
3u™ — 4™ + ™2 = 20\At (Zum_l — um_Q) .

Seek solutions of the form u™ = (2)™, z € C"
32 — 4L 4 m2 = 9N\AEL (sz_l — zm_2> :
322 — 4z 4+ 1 = 2\At (2z—1).

Set z =€, § € [0, 2r], and solve for AAt:

3¢t20 — 460 4+ 1
2 (26759 — 1)

PVAVARES



Matlab Code: stab.m

% Plot axes

ymax=1; ep=1.e-13; yaxis=[-ymax*ii ymax*ii]’;
xaxis=[-2.0+ep*ii 2.0+epx*ii]’;
hold off; plot (yaxis,’k-’); hold on; plot (xaxis,’k-’);

axis square; axis([-ymax-.5 ymax-.5 -ymax ymax]);

ii=sqrt(-1); th=0:.001:2%pi;

th=th’; ith=iix*th; ei=exp(ith);

E=1[ei 1+0%ei 1./ei 1./(ei.*ei) 1./(ei.*ei.*xei)];

ab0
abil
ab2
ab3
bdf1
bdf2
bdf3
exm
exl
ex?2
ex3
du

[1 0.0 0.0 0. 0.]7;
[0 1.0 0.0 0. 0.]1;
[0 1.5 -.5 0. 0.]7%;
[0 23./12. -16./12.

((L1. -1. 0. O.
((rs. -4. 1. o.
(([11. -18. 9. -2.
[10 00 0];
[01 00 0];
[02-100];
[03-310];
[1. -1. 0. 0. 0.]1’;

1ldtab3 =(Exdu) ./ (E*xab3);
bdf3ex3=(Exbdf3) ./ (Exex3); plot (bdf3ex3,’b-’);
bdf2ex2=(Exbdf2) ./ (Exex2); plot (bdf2ex2,’k-’);

5./12. 0.]17;
0.1)/1.)7;
0.1)/2.)7;
0.1)/6.)7;

plot (1dtab3 ,’r-’);

1

0.8

0.6

04

0.2

~3

S
N
T

S
'S
T

S
(=]
T

S
(o]
T

% AB3
% BDF3/EXT3
% BDF2/EXT2




Relating Stability Region to At

e From the stability curves, we know the limits on AAt.

e For 2nd-order centered finite-differences, we know that the maximum
(modulus) eigenvalue of the first-order operator (ujy1 —u;j—1)/Ax) is =%i.

e This gives rise to the well-known CFL condition

cAt
= — < 0.72... ,
max | A At A, S 0.72 (for AB3)

e In effect, the CFL number is a measure of the maximum modulus
eigenvalue of the convective operator. Here, we define it as:

A
CFL := max < t,
J ij

where ¢; is the local velocity and Az; is the local grid spacing.

e Note that CFL is readily computable and gives a very accurate estimate
of max |AAt|.



Relating Stability Region to At

e For the SEM, we use the same definition of CFL. In this case, however, we
have to consider the minimum space of the GLL points, which have a spacing
similar to the Gauss-Lobatto Chebyshev (GLC) points shown below.




Relating Stability Region to At

e It turns out that max |\| for the SEM is a bit larger than ¢/Atniy by a factor
1.16 < § <1.5, which is plotted below as a function of polynomial order.

A
e Thus, say for AB3, we need max |A\|At ~ SZ—t < 0.72.
T

e The consequences of not meeting this condition are seen in the bottom-right
plot of a traveling wave solution that is starting to blow up.

0.72
- CFL —
C < 5
S
0.72
FL —
C > 5




Unsteady Convection-Diffusion Example

From the preceding analysis, we can develop an unsteady

convection-diffusion solver.

e Semi-implicit update step:

iy,

where

H

k
- Bjuy’ BDF terms
j=1
k .
—At ), ajcCup™ Extrapolated convection term
j=1

RQ" (BL@L +f L) Implicit solve

QR"u", Map back to local form

BoB + vAtA

is the SPD Helmoltz matrix associated with implicit
treatment of the diffusion term.

e Q: What is the maximum timestep size, At,

that we can use?



SEM in 2D and 3D



SEM in 2D and 3D

B Obijectives:
— Look at function definitions in 2D for a single element.
— Evaluate the Laplace operator w := Au in 2D and 3D.
— Explore preconditioning strategies for iterative solution of Au = g.

— Consider convection issues in 2D and 3D.



SEM in Higher Dimensions

, _ 0*u  0%u
Poisson: — V?i = f, — — <@ + (9_y2) = f(z,y), ulgq = 0.

WRT: —/ 0 V2udV = / vfdV Vo eX) cH.
Q Q

e Integrate by parts —

/vv2udV = / Vv -VudV —/ vV4 - ndS.
Q Q o2

e Define a-inner product:

Ov Ju Ov Ou
a(v,u) = /QVU-VudV = 98_33833 a—w—ydv



SEM in Higher Dimensions

e Define a-inner product:

Ov du Ov Ou
a(v,u) = /QVU~VudV = |, o om (9_y8_ydv

e Final form: Find u € X} C H{ such that

a(v,u) = (v, f) Vo e XY

e Remainder is to evaluate the integrals on the left and right.

e We begin by defining our basis functions for a single element (for now).



Spectral Element Basis Functions in 2D

B Nodal (Lagrangian) basis:

N N

u(z,y)|qge = > D ug;hi(r) hj(s)
i=0 j=0

hi(r) € Pn(r), hi(§5) = 6;;

B E; = Gauss-Lobatto-Legendre quadrature points:

- stability ( not uniformly distributed points )
- allows pointwise quadrature (for most operators...)
- easy to implement BCs and C° continuity

B Tensor-product forms: key to efficiency!

2D basis function, N=10



Local Spectral Element Basis in 2D

Upg U1 Ugq  Ugy Uy
1o He

S
;ﬂzs 3‘33,;“43

| R

FainY
~
Fa

Fa
N




Spectral Element Operator Evaluation

Consider evaluation of the partial derivative

tUng U4 oy Mgy Mgy oo
1¢—e v o—Q wio

Upg |[Uyg  |Upg  [Uag |Uyq :
(/ W WS A \)

WNO
wo1
w11

Upp ()2 [Uas  lUgs Uy ,
(I W 4 4 \)
WN1
oy At Ala) gy g wow
(I p 4 4 4 \)
WIN
Moo (M0 Ltap Atap |tap :
-].C/ S S S '
—1 WNN
N
(U'r)z] — D’ikuk]7 (us)ij =

ou
N gfpfq
D
D
D
D
D
N
Djkuir, = Y upD
k=0

Uoo

u10

UNo

up1

u1l

UN1

UON

UIN

UNN




Geometric Deformation in 2D

2D basis function, N=10

N N
w(z,y) =Y > uijhi(r)hj(s) € Py(r,s)

i=0 j=0

x(r,s) = sz] hi(r) hj(s),

e Chain rule:

ou B ou Or

ou 0s

oxr  Or Ox + 0s Oz’

dv Qv Or

ov 0s

oxr  Or Ox + 0s Oz’

o In R%:

y(r,s) = Z Yij hi(r) hj(s).

du  Ou dr n
oy  Or Oy
Jv  OvOor

= +
Jdy Or oy

0u 0s
ds Oy
Ov O0s

9s 9y

(z,y)
(z1,72)



Q

Evaluation of a(v,u)

apply
quadrature

g Ou /
Z Z Pp Pq (JGij) . )
p=0 g=0 aT ilgp g Efa O, e
d
Z or; Or; |
P Oz, Ox,
N gy gy = TrYs — TslYr .
Ox; or Os



Evaluation of a(v,u)

Now consider the derivatives in the integrand,

ou ou dh;
87’1 §péq or §p€q 1=0 5=0 d Ep
N A
= Dpz U5 = Dyu
1=0
%, % Y
_u —= —u = Z qu u”L] — DSQ
Ory §p&aq Os Epaq j=0

We will insert these, along with D,v and Dsv into

~ ou

T JGyj
(JGy) Ep:éa ar

Q

77 (77 Py Py a

p=0¢=0

§p7€q

fp’éq )



Evaluation of a(v,u)

With a bit of rearranging,
T
T =~ any(v,u) = Dry Gu G Dru
AT Dsv Gi2 Gao Dsu

T
T [ Dy G111 G2 D, .
Dy Gia G2 Ds | —

|
|<

|

S
N
"N

IS

e Technically, this is 4, because we’ve yet to apply the BCs.

e Note the extensive use of quadrature, which allows the Gjjs to
be diagonal:

2
07“@' or;
(Gij)pq = PpPq Jpq Z ( —J> :

— &Uk, 8xk



Evaluation of a(v,u) in R’

It should come as no surprise that Z in 3D is given by,

T
D, Gi1 Giz2 Gis D,
T ~ an(v,u) = v’ | D G2 G2 Ga3 Ds | u
D, Gz Gaz Gaz3 Dy
= o’ Au,
with

Gy) oo i(a a”)
i ) imn = PlPmPn Jimn a. ~
. k=1 axk 8$k mnl

e Look at the memory access costs: — only 7(N+1)3 to evaluate Au.
e However, if we store A, the cost is (N+1)% ! (per element!)

e Recall, there are now (N+1)% unknowns in u, or in «¢ in the multi-
element case.



Comparison of A in 2D and 1D

Let’s compare 2D to 1D:

A B D, ! G111 G2 D,
b Dy G2 Goo Ds )’

2
873 (97“j
ith (Gij)py = PpPqJ, ( —) :
wi i )pq pPq Jpq kgl Oz, 01,
s L - N
For 1D, Aip=DT(5B) D.

e Here, £ constitutes the product of the metrics (g;z) and the Jacobian (J),

J
while B :=diag(py,) accounts for the quadrature weights.

e So, the two have a lot in common, but now we’ve accomodated geometric
flexibility, which is specified through the nodal point distribution (z;;, v;).

e Moreover, A has the same condition number scaling, x ~ N3 in all space
dimensions, d = 1, 2, or 3.



Generation of Mesh Deformaton



Gordon-Hall Mapping for Mesh Deformation

B Vertex deformation + Edge perturbations + Face perturbations

B Each perturbation function vanishes at the edge or face boundary, and
is blended linearly to the opposite side




Gordon-Hall Mapping for Mesh Deformation

B Vertex deformation
+ Edge perturbations
+ Face perturbations

Vijk = Zzgk 7 gN)h’l(gN)hl(gljfv)XzN]NkN

eigk = Vigk + 25rhs (§h(ED R, aNaN ~ Vigngn) f
+ >l SN)hl(SéV)( Kovin — Vinain)
+ 25l (DR Koy vk — Van g i)

fijk' = Cijk + Zz h;L (gN)(izN,j E eiN,j,k)
+ Z hl gN)(Xz JNLk ei,jN,k)
+ >z k(fl]cv)(xz',j,ch - ei,j,EN)




Care In Mesh Morphing

B Mesh morphing is very easy and adequate for many applications.

B Care must be used with non-affine mappings. Otherwise, the stability
derived from the GLL point distribution may be lost, e.g., stretching x=r ¢ :

Can be cured by first morphing entire mesh, extracting vertex values, and re-
applying Gordon-Hall (in Nek5000, usrdat() instead of usrdat2() )

B Must avoid vertex angles near 0 and 180 deg - ill-conditioned systems.



Impact of Mesh on Iteration Convergence

B |teration performance for conjugate-gradient iteration w/ overlapping
Schwarz preconditioning

B For “shape-regular” elements, iteration count is bounded w.r.t. E & N.

I 1]
11 1
11 1

Figure 1: K=93 conforming (left) and K = 77 nonconforming (right)
spectral element meshes for low past a cylinder.

Table 1: Iteration Count for Cylinder Problem
Conforming Nonconforming
K |93 |372 | 1488 | 77 | 308 | 1232
iter | 68 | 107 | 161 | 50 | 58 60

\ & >4
Y

lteration count bounded
with refinement - scalable



Enforcing Continuity in 2D

e Recall our matrix assembly in 1D, which is the same in 2D:

N V[
7 = Qe A e Qe
Lot )\ AW

= viApu; = v'QTAL Qu = v'Au

e To compute the matrix-vector product Au without assembly, we need to
effect the action of Q and Q7.

e This is typically done via subroutines, e.g., as in the following example.



Enforcing Continuity in 2D

e Consider the following example:

“l U ”; '”.“) “1 1




Enforcing Continuity in 2D

e The corresponding () matrix is:

l'll' [ 1
(“1)\ 1

1
Uy o
1
U o 1 ( u, \
20
Ug 1 Uy
1 ’
u; 1 U
1
s 1 My
i
Ug 2 1 Us
1
Uy o 1 Ug
1 -
] Ug
1 e
1 Uyo
1 g
1 Uy
1 u,
1 g4
1 Uyg
L 1
N~
W N
Ur ) i
W o W
) 93
® © P \>2 P @ p
U~ Ug U, Uy U5 ul u?, il
o o] [ (] O ¢
uy s g Uy Uy ul | u? ul |
o o V)Y o )]
U, s Uy Uy Uy ul u? ul




Q and Q' implemented as subroutines

In the pseudo-code below, we rely on an array global_index that points
each local index to its global counterpart.

Procedure u; = Qu Procedure v = Q'u I
for e=1,..., E; v :=0:
for 3=0,...,N; for e=1,... FE;
for 1 =0,...,N; for 7=0,...,N;

?:= global_index(i,j,e)  for i=0,...,N;

ug; =y 1 := global _index(i, j, e)
end v; = v + U

end

e Note that Q7 implies addition.

e In parallel, application of @ and Q7 implies communication. (We discuss
this issue off-line, time permitting, but see the reference in High Order Meth-
ods for Incompressible Flow, Deville, Fischer, Mund, Cambridge, 2002.)

e A scalable ( > million-core) stand-alone C code for this gather-scatter op-
eration is provided in the gs code within Nek5000.



Fast Operator Evaluation in 2D

Fast operator evaluation is central to the success of the SEM.

The end user is interested in a solution to a given accuracy, as fast as
possible.

The rapid convergence of high-order methods (often) implies a need for fewer
points. If it takes 10 times, longer to get the result, however, the method is
not interesting.

It turns out—for several reasons—that a properly implemented SEM is
competitive with traditional methods on a point-by-point cost basis, which
implies lower costs for the SEM because of the reduction in number of points.

Many of the ideas central to the performance of the SEM were laid out by
Steve Orszag in a seminal 1980 JCP article.

These ideas were an insightful extension of his pioneering work in spectral
methods in the 1970s.



Fast Operator Evaluation in 2D

We need to evaluate matrix vector products of the form w = Au:

S D, ! G111 G2 D, .
- Dy G2 Ga Ds | —

e We do this one step at a time, starting with D,u and Dgu.

e To begin, let’s recognize that the vector of unknowns,
u = (ugo u1g ... unn)’ = {u;j} can also be view as a matrix, U = w;;.

e We use this fact to rewrite the matrix-vector product D,u as a
matriz-matrixz product, DU:

N
ang = Z ﬁikukj == lA)U
k=0

e For the s-derivative, we have a similar result:
N N N
. - _ A AT 17 AT
Dgu:= Y Djrui, = > uipDjr =Y ugDp; = UD".

e Matrix-matrix products are intrisically fast. WHY?



Fast Operator Evaluation in 2D

Using D,u = ﬁU, Dsu = UﬁT, and

S D, ' G111 G2 Dy \
- Dy G2 Ga Dgs |~

we have the following matlab code for w = Au:

ur=Dh*u; us=uxDh’;
t1=G1l1.*xur + G12.*us;
t2=G12.*xur + G22.*us;
w = Dh’*xtl + t2%Dh;

Fast operator evaluation is central to efficient implementation of
iterative solvers, which are the fastest possible for 3D problems.



Matlab Demo: mycg.m

[Ah,Bh,Ch,Dh,zh,wh]=SEMhat (N) ; The code shown here imple_
nb=N+1; R=speye(nb); R=R(2:nb-1,:); R1=R; nl=size(R1,1); . .
ments conjugate gradients us-

nb=N+1; R=speye(nb); R=R(2:nb ,:); R2=R; n2=size(R2,1);
ing the general Au; kernel.
% Compute Metrics and Jacobian using Cramer’s Rule for 2x2:

[Y,X]=meshgrid(zh,zh); % Deform X&Y at this point, if you wish...
Y=1%Y;

% Compute Metrics and Jacobian using Cramer’s Rule for 2x2:

yA / rx ry \ / xr xs \ -1 1/ ys -xs \
b | = | | = - | | ;5 J = xr*ys - xs*yr
yA \ sx sy / \ yr ys / J \ -yr xr/

xr=Dh*X; yr=Dhx*Y; xs=X*Dh’; ys=Y*Dh’; J=xr.*ys-xs.*yr;
rx=ys./J; ry=-xs./J; sx=-yr./J; sy=xr./J;

Bb=wh*wh’; ’Diagonal mass matrix on ref. domain: B=rho_i rho_j

G11 = Bb.*xJ.*(rx.*rx + ry.*ry); 7% Pointwise collocation

G12 = Bb.*J.*(rx.*sx + ry.*sy); % for all of these terms!

G22 = Bb.*J.*(sx.*sx + sy.*sy);

fL = 1 + 0*X; % Set rhs:

g = R1x(Bb.*J.xfL)*R2’; g=reshape(g,nl*n2,1); % Make g a vector for pcg.

asem = Q(u,Dh,G11,G12,G22,R1,R2)asem_2d(u,Dh,G11,G12,G22,R1,R2);
M = speye(nl*n2); % Identity for PCG

tol = 1.e-10; maxit=400;



Matlab Demo: asem 2d.m

Here is the Auj, kernel, which relies on precomputed G;; input.

function w = asem_2d(u,Dh,G11,G12,G22,R1,R2);

nl

ub
ub

= size(R1,1); n2 = size(R2,1);

= reshape(u,nl,n2);
(R1’*ub) *R2;

ur=Dh*ub; us=ub*Dh’;
t1=G11.xur + G12.*us;
t2=G12.xur + G22.*us;

W

Dh’*t1 + t2x%Dh;

(R1*w)*R2’;
reshape(w,nl1*n2,1);

To
To

To
To

Vector to "mesh" form
Prolongate to full local coordinates

Restrict
Convert back into a vector for pcg



Preconditioned Conjugate Gradient Iteration

e Starting with a guess z, the standard pPcG algorithm with M as
preconditioner runs as follows:

Computer :=b— Az, z = M~'r, and pi= 2z,

For k=0,1,... until convergence:
w = Ap, < mat-vec

Tjyq = I+ ap,
r'iy1 =1~ —aw,

Zj1=M"rj, > preconditioner
Bi=(r,2)/(r,2),
p:=z+ [p,

End.

e The number of iterations for m digits of accuracy scales like kyax ~
mr/2, where k is the condition number of M~ A

e The idea of preconditioning is to find a matrix M such that Kk ~ 1
and z = M~ lris easy to compute.

e There are several strategies for preconditioning the SEM.



Preconditioned Conjugate Gradient Iteration

e One approach, originally due to Orszag '80, and subsequently explored by Deville
& Mund 84 and Canuto & Quarteroni 85, is to set up a low-order discretization
on the spectral element nodal points.

e Call the resultant—sparse—operator Aga,,-

e The condition number of the preconditioned system, Af_elmA scales as
independent of the problem size!

2
T
K'NT"

e The advantage here is that the sparse FEM system is much cheaper to solve than
the relatively full SEM system. Typically, however, one needs a good algebraic
multigrid solver because the resultant FEM mesh has high-aspect ratio cells which
are troublesome for most preconditioners.

/' 8y

@ o 0 o

(o} O 0|0 O o|0O ] oe

(o} o 0|0 O 0|0 (o] oe
o o 0|0 o) Oo|0 (o] oe

o o] (o o) O o|C &) oe




Two-Level Overlapping Additive Schwarz Preconditioner
(Dryja & Widlund 87, Pahl 93, PF 97, FMT 00)
E

S REAZIRer + REAGIRor

e=1

S
|
<

S
|

=] o B o010 - o o010 a a =]

Local Overlapping Solves: FEM-based Coarse Grid Solve: Poisson problem
Poisson problems with homogeneous using linear finite elements on entire

Dirichlet boundary conditions, A, . spectral element mesh, A, (GLOBAL).



Overlapping Additive Schwarz Smoother

o Mg =Y RIAZIR, Dryja & Widlund 87,...

chwarz

o Fast tensor-product solvers for Al Rice et al. '64, Couzy '95

¢ Bypasses cell aspect-ratio problem

Al =
(SRS TN +N, )" L(S®8)T




Extension to Navier-Stokes



Navier-Stokes Time Advancement

ou
Ot

Fu-Vu

V- -u

—Vp + éVQu
O

B Nonlinear term: explicit
— k th-order backward difference formula / extrapolation (k=2 or 3)
— k th-order characteristics (Pironneau ’ 82, MPR ‘90)

M Linear Stokes problem: pressure/viscous decoupling:
— 3 Helmholtz solves for velocity (“easy” w/ Jacobi-precond.CG)
— (consistent) Poisson equation for pressure (computationally dominant)

M For LES, apply grid-scale spectral filter (F. & Mullen 01, Boyd ’ 98)
— in spirit of HPF model (Schlatter 04)



Characteristics-Based Convection Treatment
(OIFS Scheme - Maday, Patera, Ronquist 90, Characteristics - Pironneau 82)

Idea: Solve Navier-Stokesin ~ Du _ S(u)
Lagrangian framework: Dt |

For a scalar ¢, we have %tb = 3¢7= 4%1; +on 2 + O(At?)




Characteristics-Based Convection Treatment
(OIFS Scheme - Maday, Patera, Ronquist 90, Characteristics - Pironneau 82)

For velocity (or ¢), we compute the values of u" ™4
by solving an auxiliary advection problem.

Du 3w’ —4a !+ a2 5 -
= - +O(A#Y) = S(u")

Dt YAV
| ou" | | |
u' e +u-Va"?=0 on[t"7 "],
ot
flwl_{'{ (X, t“-fj) :: 11'H-—f_,!(X? t“—fj) .
\

i
N ~n—2
Q.
—J
Xr;—?




Unsteady Stokes Problem at Each Step

Hu' + Vp'= g’
V-u” — 0
U ( .
Re
3 & : ,
.’L[J_Q? .’J.I._-—‘,
B /inear
B implicit

B symmetric positive definite operators

+ For”

in

in £,

(allows superposition)
(large CFL, typ. 2-5)
(conjugate gradient iteration)



P, - Py, Spectral Element Method for Navier-Stokes (MP 89)

WRT: Find u e XV, p € YV such that:
1 1

_ N 1
E(V“aVV)GL + E(uaV)GL - (0, V-V)g = (E,v)g, VveX" CH
— (¢,V-u)p =0 VgeY¥ c L’
Velocity, u in P,,, continuous
Pressure, p in P,_,, discontinuous
[ B4} [+ a4 o [+ a a % a =] 4a [+ =] 4] (= 4
[4) a (&2 c a3 o [+] 0 a t:§ Q o Q o|o Q [») Q
: 03 04
1° ° “ i ® ? “ ? 4] [} a [« I e] 4] o a
SEDEEENS SIS ST PSP
[v] Q o (<3 ) o [v] a ? ] a G|o
s Q Q G c 4 O o] Q Q ‘5 a (] Q G|o 4] =3 4
: Ol 02
fo o o ope o o ol
Gauss-Lobatto Legendre points Gauss Legendre points

(velocity) (pressure)



Navier-Stokes Solution Strategy

B Semi-implicit: explicit treatment of nonlinear term.
B L[eads to Stokes saddle problem, which is algebraically split

MPR 90, Blair-Perot 93,
Couzy 95

H _DT 1_[”' B B£ + DT}_J'H-—_[
-D 0 2_)‘“. o 2_)71.—1 o ip

B E - consistent Poisson operator for pressure, SPD
— Stiffest substep in Navier-Stokes time advancement
— Most compute-intensive phase

— Spectrally equivalent to SEM Laplacian, A



Pressure Solution Strategy: Ep" = g"

1. Projection: compute best approximation from previous time steps

— Compute p_in span{ p™!, p"2, ..., p"'} through straightforward
projection.

— Typically a 2-fold savings in Navier-Stokes solution time.

— Cost: 1 (or 2) matvecs in E per timestep

2. Preconditioned CG or GMRES to solve
EDp=g'-Ep



Initial guess for AX"™ = b" via projection (A=E,SPD)

Given - §"
- {Z4,...,Z;} satisfying i@TAij = d;5,
- Set =% .., o= i?b (best fit solution)
- Set Ab:=b" — Az
- Solve AAz = Ab to tol e (black box solver)
2" =TI+ Az

+ If (I = lmax) then
i =2/l
[ =1
else

Iy =
[ =1+
endif

(Az — = &)/ (AL ADz — S 32)7,  f; = 5AN
1



Initial guess for KEp™ = g" via projection onto previous solutions
(F 93 98)

mip-pill,=0Dr)+0(ey)
M two additional mat-vecs per step

W storage: 2+[ __vectors

M results with/without projection (1.6 million pressure nodes)

3

Preazurqe Count
= @ B K ¥ & & & 2 A
T T T T TITTTITTTTTY

&g

¢ 4 fold reduction in iteration count, 2 — 4 in typical applications



Overlapping Additive Schwarz Preconditioner for the Pressure

o =} & a9

Overlapping Solves: Poisson problems
with homogeneous Dirichlet bcs.

(Dryja & Widlund 87, Pahl 93, PF 97, FMT 00)

Coarse Grid Solve: Poisson problem
using linear finite elements on spectral
element mesh (GLOBAL).



Overlapping Schwarz Precondtioning for Pressure
(Dryja & Widlund 87, Pahl 93, PF 97, FMT 00)

L ,€ —

E
2=P'r=RJA;Ryr+SR,TA, 'R, I

A, , - low-order FEM Laplacian stiffness matrix on overlapping domain
for each spectral element k (Orszag, Canuto & Quarteroni, Deville & Mund, Casarin)

R, , - Boolean restriction matrix enumerating nodes within
overlapping domain e

A, - FEM Laplacian stiffness matrix on coarse mesh (~ Ex E)

R," - Interpolation matrix from coarse to fine mesh



Overlapping Schwarz - local solve complexity

B Exploit local tensor-product structure

B Fast diagonalization method (FDM) - local solve cost is ~ T T
4d K N @D (Lynch et al 64)
2D: A= (By®A, + A,®B,), STAS=A, STBS=1.

ATl = (5,®8,)I®A + Ay )T (S) @ S5]).
NOTE: B,, By, Ilumped 1D mass matrices (conditioning)

Op. Count: W =8KN? (vs. 4K N* for band solve)
Storage: S = O(KN? (vs. KN? for band solve)
NOTE: 5,® S,u = S,US] (matrix-matrix product)



2D Test Problem: Startup flow past a cylinder (N=7)

Performance of the additive Schwarz algorithm, (10_5)

FDM

N,=0

N,=1

N,=3

A():O

Deflation

iter CPU

iter CPU

iter CPU

iter CPU

iter CPU

iter CPU

93
372
1488

67 4.4
114 37.
166 225.

121 10.
203 74
303 470.

64 5.9
106 43.
158 274.

49 5.6
73 39.
107  242.

169  10.
364 193
802 1798.

126 17.
216 125.
327 845.

——,

A\
3,
N Nl
I 1
~ P

4]

Residual history

Resistant pressure mode, p!% - p», (K=1488)




Impact of High-Aspect Ratio Elements

B Nonconforming discretizations eliminate unnecessary elements in
the far field and result in better conditioned systems.

Figure 1: K=93 conforming (left) and K = 77 nonconforming (right)
spectral element meshes for How past a cylinder.

Table 1: Iteration Count for Cylinder Problem
Conforming Nonconforming

K |93 | 372 | 1488 | 77 | 308 | 1232
iter | 68 | 107 | 161 | 50 | 58 60

A J
Y

Iteration count bounded
with refinement - scalable




Stabilizing Convection-Dominated Flows



Stabilizing High-Order Methods

In the absence of eddy viscosity, some type of stabilization is
generally required at high Reynolds numbers.

Some options:

— high-order upwinding (e.g., DG, WENO)
— bubble functions

— spectrally vanishing viscosity

— filtering

— dealiasing



Spectral Filter Boyd ’98, F. & Mullen ‘01

B Expand in modal basis:
N

u(x) = ), uop(r)

k=0

B Set filtered function to:
N

u(x) = F(u) = Y op Uy ¢x(r)

k=0

B In higher space dimensions:

F=FQFQF

® Spectral convergence and continuity RN |
preserved. (Coefficients decay

Transfer function oy,
exponentially fast.)

1] 1 2 3 4 S B 7 8 9 10

M Post-processing (easy) !



Spectral Filter

Boyd "98, F. & Mullen ‘01
Transfer function characterized by two parameters:

— amplitude, a ~ 0.01—0.25
— cut-off wavenumber, K, K

a
038 4

2

o)

-

O 06 i
i)

@)

-

& 04f .
IS

C

5 02} .
|_




Numerical Stability Test: Shear Layer Roll-Up

(Bell et al. JCP 89, Brown & Minion, JCP 95, F. & Mullen, CRAS 2001)

(256,16) a = 0.0, t = 1.0
= |

() ...

(256,8) @ = 1.0, t = 1.5
“\~ “\\. '-- i ' :/;

(256,8) @ = 0.3, t = 1.5

v'

(1024,8) o = 0.05, ¢ = 1.2

Figure 1: Vorticity for different (K, N') pairings: (a~d) p = 30, Re = 10°, contours from -70 to
70 by 140/15; (e-f) p = 100, Re = 40,000, contours from -36 to 36 by 72/13. (cf. Fig. 3c in [4]).



Error in Predicted Growth Rate for (waixs zang s4)

Orr-Sommerfeld Problem at Re=7500

Spatial and Temporal Convergence

(F. & Mullen, 01)

At =0.003125 N =17 2nd Order 3rd Order

N =00 a=02 At a=00 ao=02 o=00 a=02
7 0.23641 0.27450 0.20000 0.12621 0.12621 171.370 0.02066
9 0.00173 0.11929 0.10000 0.03465 0.03465 0.00267 0.00268
11 0.00455 0.01114 0.05000 0.00910 0.00911 161.134 0.00040
13 0.00004 0.00074 0.02500 0.00238 0.00238 1.04463 0.00012
15 0.00010 0.00017 0.01250 0.00065 0.00066 0.00008 0.00008

— — ——

4 = ——

PINSS=INSS——r

Base velocity profile and perturbation streamlines



Filtering permits Re, > 700 for transitional boundary
layer calculations

F T T T T 3
-0.010- b
-0.015 Re - 7 O 0 7
-0.020-
-0.025-

-0.0301
£-0.035F
@»0.040 - A
St

*.0.045F .
-0.050 A
-0.055 .

060l |

Figure 1: Principal vortex structures identified by Az = —1 iscaurfaces at Rexy = 760: standing homeshoe vortex 0,065 |
(a), interlaced tails (b}, hairpin head (c), and bridge (d). Colors indicate presaure. (K=1021, N = 15).

| I | | 1
0.00 50.00 100.00 150.00  200.00

- blow up
Re = 1000

LTI

_;!'__‘b'-;’;\— e
A

B =, -
63 Fri | %
& JiT 7| m?l';




Why Does Filtering Work ?
( Or, Why Do the Unfiltered Equations Fail? )

Double shear layer example:

% B L S X W S
\}\\ Wom W Wil I D o
TUNRN N RN N NN e D D DD
AV RN N N N e e O e e -
NN R W s~ e e e
reere e ~ R L — —_— o -
\\ i A ame . - - . LN N . . - - P
| -
o - - - . - - ~ —_ - e
o e G e s = 2 : s - - T ZzZziv
S A o -— - ~ L - o
e — ~ - N N -
o, Ay - — - - et ~
\ . - - — M W ~
X
-v/ D e — -— - ety N \ N ]
3| Al
> . St T T T N N T
b A = s o e e e 5\
/ o el SR & N NN N
A B . RN \.k N
-~ < el e o Y
= TTOOTTOT T RS S N N N NN N
—

High-strain regions
Ok are troublesome. ..



Why Does Filtering Work ?
( Or, Why Do the Unfiltered Equations Fail? )

ou
Consider the model problem: % ¢ Vu
. . . du
Weighted residual formulation: BE = —Cu
B;; :/quiqu dV = symm. pos. def.

= —/qujc-quidV—/Qﬁbjﬁij‘ cdV

= skew symmetric, if V. c=0.

B~lCc — imaginary eigenvalues

Discrete problem should never blow up.



Why Does Filtering Work ?
( Or, Why Do the Unfiltered Equations Fail? )

Weighted residual formulation vs. spectral element method:

Cz'j = (¢;, - Vqﬁj) — _Cjz’

éij — (sza C- quj)N 7 _éji

This suggests the use of over-integration (dealiasing) to ensure
that skew-symmetry is retained

Cij = (Jo; (Je) - IV,

Jpg = hflv(géw) interpolation matrix (1D, single element)



Aliased / Dealiased Eigenvalues: u;+c-Vu =0

B Velocity fields model first-order terms in expansion of straining and rotating flows.
— For straining c:ase,%|fu,|2 ~lay |2+ |3 nl?
— Rotational case is skew-symmetric.
— Filtering attacks the leading-order unstable mode.

ey 1 AN
S t NN
i ro R
e . I i
e~ . e E
TR e w S N il ‘ ¢ P
SN NN N 4 I X e
N
SRR
(A A A Al N S S N ,
grrrres e :
YV 2 A NN INENNAN g
N A A NN ENENRLY H
P A A A N NN AR § i
Wiy s Vo E
L T E E
Wi torrt -
Wi [ E
PARRAY PR g
R S oy £ §
R S AR £
A T ////; ¥
N Z
WSS ==232355%

c=(-yx)



Stabilization Summary

B Filtering acts like well-tuned hyperviscosity

— Attacks only the fine scale modes (that, numerically speaking,
shouldn’ t have energy anyway...)

— Can precisely identify which modes in the SE expansion to
suppress (unlike differential filters)

— Does not compromise spectral convergence

M Dealiasing of convection operator recommended for high
Reynolds number applications to avoid spurious eigenvalues

— Can run double shear-layer roll-up problem forever with
-v=0,

— no filtering



Dealiased Shear Layer Roll-Up Problem, 128?

n =0, no filter n =10, no filter n =0, filter =(.1,.025)

However, Johan Malm established that we do eventually get blow-up with the case on the left!



Thank you!

Time for Questions!









Stability Region for Euler’s Method

Im(A\h)

Unstable

Stable

Re(\h)




MATLAB EXAMPLE: Eulerfory’ = \y

$% A simple Euler forward integrator

%

% Typical Usage: h=.01l; lambda=3; efl
%

(ef1.m)

tfinal = 4; nsteps=ceil(tfinal/h); h=tfinal/nsteps;

x=zeros(nsteps+1l,1);t=x;
t=h*(0:nsteps);
hold off; x(1)=1; plot(t(l),x(1l),'ko');
xe=x(1l)*exp(lambda*t); plot(t,xe,'r-")
for k=l:nsteps;

fx = lambda*x(k);

x(k+1l)=x(k) + h*fx;
t(k+1l)=k*h;

plot(t(k+1),x(k+1),'k."'); drawnow;

end;

hold on;

0.9

0.8

0.7

0.6

04

0.3

0.2

0.1

50

05k o

we

40t

30F

20

20k

50k

<40+

-50




Stability Region for Euler’s Method

Im(A\h)

Unstable

Stable

Re(Ah)

|
-1

Why complex plane?




Recall: Orbit Example

o)

dy
oA
dt Y

A —1
’A—)\[| _

1 —\
= XN 4+1=0
A = i

 Even though ODE involves only reals, the behavior can be
governed by complex eigenvalues.



Growth Factor: Euler Forward

Growth Factors for Real )

Growth Factor: Euler Backward Growth Factor: Trapezoidal Rule
T T T T T T T 1.5 T T T T T T T

0 0
/ | L ] o /
-1

1 1 1 1 1 _] 5 1 1 1 1 1 1 1 L L L L L
& 5 4 3 2 ] 0 3 7 £ 5 4 -3 -2 -1 0 -8 7 6 5 “ -

AAL A AL

B Each growth factor approximates e*4t for A\At > 0
B For EF, |G| is not bounded by 1

B For Trapezoidal Rule, local (small\At) approximation is O(AAt?), but
G| 2> -1as At 2 -x.

B BDF2 will give 2"9-order accuracy, stability, and |G|>0 as AAt 2 -co .




BDFk Formulas: GTE = O(AtX)

u” — un—l

BDF1: I | 7 + O(At)
3u™ — 4y 4 2
. Oul 2
BDF2: It | n N + O(At )
11u™ — 18y 4 9y =2 — 23
. ou _ 3
BDF3: ot o N -+ O(At )

® Unlike the trapezoidal rule, these methods are L-stable:
— |G|=20 as M\At 2 -00

® k-th order accurate

B [mplicit

B Unconditionally stable only for k < 2

B Multi-step: require data from previous timesteps



Relationship between LTE and GTE

0 05 1 1.5 0 05 1 15 2 25 3 35 4

Un = Yo + /OT f(t,y)dt
If LTE = O(At?), then commit O(At?) error on each step.
Interested in final error at time ¢t =7 = nAt.

Interested in the final error e, := y(t,) — y, in the limit n — oo, nAt =T fized.

Nominally, the final error will be proportional to the sum of the local errors,

en ~ Cn-LTE ~ CnAt?> ~ C (nAt)At ~ CTAt

GTE ~ LTE /At



BDFk Neutral Stability Curve

CImaAt

Re X At

| |
|

|

i

j

—"| bdfk_orbit.m

] ] 1 ] ! 1 [ ]
-1 0 1 P 3 4 5 5] 7



Explicit High-Order Methods

B High-order explicit methods are of interest for several reasons:

— Lower cost per step than implicit (but possibly many steps if
system has disparate timescales, i.e., is stiff --- spring-mass
example).

— More accuracy

— For k > 2, encompass part of the imaginary axis near zero, so
stable for systems having purely imaginary eigenvalues.

— WEe'll look at three classes of high-order explicit methods:
 BDFk / Ext k
 kth-order Adams Bashforth
* Runge-Kutta methods

— Each has pros and cons...



Higher-Order Explicit Timesteppers: BDFk/EXTk

e Idea: evaluate left-hand and right-hand sides at ¢, 1 to accuracy O(At").

dy

dt — f(t7 y) ‘tk:—i—l

Tkt
e Can treat term on the right via kth-order extrapolation.
e For example, for k = 2,

3Yr+1 — 4yr + Yr—1
2AL

+ O(A) = 2fi — fiir + O(AL)

e Solve for y;1 in terms of known quantities on the right:

2 [ dur — ur_
hot = Yk ka L At2f — fo)| + O(AS)

e Note that LTE is O(At?), GTE=0(A#?).



BDF/EXtk Neutral Stability Curve

Im A At
1 k=1
0 Re A|At
Stable |
-0.5f
-1F

B Here we see that the k=3 curve encompasses part of the imaginary axis near

the origin of the A At plane, which is important for stability of non-dissipative
systems.



Higher-Order Explicit Timesteppers: kth-order Adams-Bashforth

e Adams-Bashforth methods are a somewhat simpler alternative to BDFk/EXTk.

e Time advancement via integration:

li+1
Yieli = Yk +/ f(t,y)dt

142

o ABI:
tk+1 )
/ ft.y)dt = hpfy + O(R7)
ty
o AB2:
Pret1 h? [f, — fi_
/ f(t,y)dt = hfp + =& |21 4 om?)
th 2 hi—1
3. 1 o
= h §fk — §fk_1 + O(h?) (if h is constant)
e AB3:

/tk“ £(t.y) dt h<23f O+ 2 ) + O(hY (if B is constant)
Y = oIk — 51k =Ir—2 1T 1 18 constan
" 12" 7T 12 12

e LTE for ABm is O(h™"). GTE for ABm is O(h™).



Stability of Various Timesteppers

® Derived from model problem du _
dt
W Stability regions shown in the AAt plane (stable inside the curves)

AU

s 7 A — ~(0.72

Re N ..

L - I 1
05 0 cs =15 -1 -0s

Figure 1: Stability regions for (left) AB2 and BDF2/EXT2, (center) AB3 and BDF3/EXTS3,
and (right) AB3 and BDF2/EXT2a.

B To make effective use of this plot, we need to know something about the
eigenvalues A of the Jacobian.

MW But first, How are these plots generated?



Determining the Neutral-Stability Curve

d
Consider BDF2/EXT2, and apply it to d—i‘ — Au:
3u™ — 4™ + ™2 = 20\At (Zum_l — um_Q) .

Seek solutions of the form u™ = (2)™, z € C"
32 — 4L 4 m2 = 9N\AEL (sz_l — zm_2> :
322 — 4z 4+ 1 = 2\At (2z—1).

Set z =€, § € [0, 2r], and solve for AAt:

3¢t20 — 460 4+ 1
2 (26759 — 1)

PVAVARES



Matlab Code: stab.m

ymax=1; ep=1.e-13; yaxis=[-ymax*ii ymax*ii]’; 7% Plot axes
xaxis=[-2.0+ep*ii 2.0+epx*ii]’;

hold off; plot (yaxis,’k-’); hold on; plot (xaxis,’k-’);
axis square; axis([-ymax-.5 ymax-.5 -ymax ymax]);

ii=sqrt(-1); th=0:.001:2*pi; th=th’; ith=ii*th; ei=exp(ith);
E=1[ei 1+0%ei 1./ei 1./(ei.*ei) 1./(ei.*ei.*xei)];
1

ab0 = [1 0.0 0.0 0. 0.17; 08

abl = [01.00.00. 0.1%; 0.6

ab2 = [01.5-.50.0.]1; 0l

ab3 = [0 23./12. -16./12. 5./12. 0.]1’;

bdfi = (([ 1. -1. 0. 0. 0.1)/1.)’; 0.2

bdf2 = (([ 3. -4. 1. 0. 0.]1)/2.)7; 0

bdf3 = (([11. -18. 9. -2. 0.]1)/6.)7;

exm =[10 00 0]’; 0.2r

ex1 =001 00 0]"; 04}

ex2 = [02-100]";

ex3 = [03-310]"; 0.6

du = [1. -1. 0. 0. 0.]’; 0.8}
-1
15

1ldtab3 =(Exdu)./(Exab3); plot (1dtab3 ,’r-’); 7% AB3

bdf3ex3=(Exbdf3) ./ (Exex3); plot (bdf3ex3,’b-’); % BDF3/EXT3
bdf2ex2=(Exbdf2) ./ (Exex2); plot (bdf2ex2,’k-’); % BDF2/EXT2










